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Abstract

Consider a bank that uses an AI system to decide which loan
applications to approve. We want to ensure that the system is
fair, that is, it does not discriminate against applicants based
on a predefined list of sensitive attributes, such as gender and
ethnicity. We expect there to be a regulator whose job it is
to certify the bank’s system as fair or unfair. We consider is-
sues that the regulator will have to confront when making
such a decision, including the precise definition of fairness,
dealing with proxy variables, and dealing with what we call
allowed variables, that is, variables such as salary on which
the decision is allowed to depend, despite being correlated
with sensitive variables. We show (among other things) that
the problem of deciding fairness as we have defined it is co-
NP-complete, but then argue that, despite that, in practice the
problem should be manageable.

1 Introduction
AI systems are playing a larger and larger role in decision
making these days, in applications like deciding who to in-
terview and hire, deciding who gets paroled, and deciding
who gets credit. Moreover, AI systems can often make these
decisions better than people (Kleinberg et al. 2018a). How-
ever, as many have noted, this raises the concern that deci-
sions are made based on sensitive attributes, such as race,
gender, or religion.

Given the laws and regulations governing discrimination
(i.e., making decisions based on the values of sensitive vari-
ables), we consider what we suspect will be an important
use case in the future. We assume that there is a regulator
that regulates financial institutions, for example, banks, and
in particular the decisions made by the banks on whether to
grant loans to applicants. (For definiteness, we assume that
the system being regulated is a bank’s system for determin-
ing who gets a loan. But the points that we make apply with-
out change to all decision-making systems where there are
discrimination concerns.) The bank wants to make this de-
cision based on their (possibly proprietary) causal/machine
learning model. (We do not distinguish causal models from
machine learning models, for reasons that will be come clear
shortly.) The bank comes to the regulator seeking approval.
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The regulator has some variables that she considers sensi-
tive. Intuitively, the bank is not supposed to use these in
making its decision (although some uses may be permitted,
as we shall see). The bank may view its model as propri-
etary, so wants to keep as many of the details regarding its
model private, while still convincing the regulator that it is
not discriminating.

We take the bank’s algorithm to be a “grey box”, where
some of its features must be disclosed, but the bank can still
keep many of its features proprietary. Specifically, we as-
sume that the bank will need to disclose only which features
are inputs and how they are computed, and provide the reg-
ulator with black box access to the system, so she can see
the decision made given certain inputs. The bank will also
request the regulator to have certain variables be explicitly
allowed. Intuitively, allowed variables are variables that are
correlated with sensitive variables that can be used by the
bank’s algorithm to make decisions. For example, gender
may be considered a sensitive variable, but salary may be an
allowed variable, although it is correlated with gender. (Al-
lowed variables have been called resolving variables; see,
e.g. (Kilbertus et al. 2017).) The regulator will have to de-
cide whether to agree with the bank’s request regarding al-
lowed variables. This is not an easy decision, and is one that
ethicists and society at large may have to resolve. Never-
theless, we believe that there are necessary conditions that
must be met for a variable to be allowed. The issues that
arise here are essentially those that determine whether dis-
parate impact has taken place, according to American law
(Primus 2003).

Given the sensitive and allowed variables, our notion of
fairness then says, roughly speaking, that the bank’s soft-
ware is fair (i.e., acceptable to the regulator) provided that, if
we fix the values of the allowed variables, changing the val-
ues of the sensitive variables has no impact on the outcome.
While our definition is very much in the spirit of earlier def-
initions of fairness that use causal models (in particular, the
notion of counterfactual fairness introduced by Kusner et
al. (2017), path-dependent notions of fairness considered in
(Chiappa 2019; Nabi and Shpitser 2018), and the notion im-
plicitly used by Kilbertus et al. (2017)), it differs in one sig-
nificant way. Whereas the earlier definitions are all statisti-
cal, ours is not: it requires that outcomes are the same, not
that their probabilities are equal. We argue that, for our set-



ting, this is appropriate. Roughly speaking, we view a sys-
tem as fair if it is fair for each applicant.

In this setting, we also examine the effect of proxy vari-
ables. It is often not difficult for an AI system to find a proxy
for a sensitive variable and use that instead. For example, if
gender is a sensitive variable, an AI system may use a highly
correlated variable like favorite clothes as a proxy for gen-
der. Indeed, not only can an AI system find proxy variables,
if it is told that it cannot use sensitive variables in its deci-
sion, it will actively seek out proxies. Prince and Schwarcz
(2020) point out that while the use of proxy variables is in-
compatible with (American) anti-discrimination laws, it is
likely to increase substantially as more AI systems are used.

Kilbertus et al. (2017) take proxy variables to be nothing
more than descendants of sensitive variables in the causal
graph. If this were always the case, then dealing with them
would be easy. Changing the value of a sensitive variable
should change the value of its proxies, and hence the out-
come. Our approach would call this unfair.

Unfortunately, it is not the case that proxy variables are
always descendants of sensitive variables, for (at least) two
reasons. The first is that a proxy variable can be correlated
with a senstive variable if it is a descendant of an ancestor of
the sensitive variable. For example, if religious affiliation is
a sensitive variable, one of its parents in the causal graph
might be religious affiliation of parents. This is clearly a
good proxy for religious affiliation even though it is not a
descendant of it. We solve this problem by requiring that all
ancestors of sensitive variables be taken to be sensitive as
well. However, there is another, arguably more serious rea-
son that a proxy variable might not be a descendant of a
sensitive variable. Suppose that an AI system is often able
to determine (perhaps by checking social media) which reli-
gious holidays an applicant celebrates (if any). Moreover, it
treats this as an input variable. Of course, in an actual causal
model of the world, religious holidays celebrated is clearly
a descendant of religious affiliation. However, in the bank’s
model, it is not. It is just a variable whose value is deter-
mined from social media. The bank’s system will not “un-
derstand” that it should be a descendant of religious affil-
iation, and the bank’s system designers might not even be
aware of it being used. While the connection between re-
ligious affiliation and religious holidays celebrated is bla-
tantly clear, the connection beween other variables may not
be at all clear, and not recognized by the system designers. In
any case, religious holidays celebrated is not a descendant
of religious affiliation; changing the value of religious affil-
iation will not affect the media posts observed. We discuss
how the regulator can deal with this in Section 3.

To summarize, the main contribution of this paper lies in
creating a framework that clearly delineates what a regulator
will have to do in order to certify an AI system for fairness.
In doing so, we highlight the subtleties involved in deal-
ing with allowed variables and proxy variables, and make
the case for a non-statistical definition of fairness. We also
examine the complexity of determining whether a system
is fair, and show that it is co-NP-complete in the size (i.e.,
number of variables) of the system, but then argue that this
should not be a problem in practice.

2 Causal Models
In this section, we review the definition of causal models
introduced by Halpern and Pearl (2005). The material in this
section is largely taken from (Halpern 2016).

We assume that the world is described in terms of vari-
ables and their values. Some variables may have a causal
influence on others. This influence is modeled by a set of
structural equations. It is conceptually useful to split the
variables into two sets: the exogenous variables, whose val-
ues are determined by factors outside the model, and the en-
dogenous variables, whose values are ultimately determined
by the exogenous variables. The structural equations de-
scribe how these values are determined.

Formally, a causal model M is a pair (S,F), where S is
a signature, which explicitly lists the endogenous and ex-
ogenous variables and characterizes their possible values,
and F defines a set of (modifiable) structural equations, re-
lating the values of the variables. A signature S is a tuple
(U ,V,R), where U is a set of exogenous variables, V is
a set of endogenous variables, and R associates with ev-
ery variable Y ∈ U ∪ V a nonempty set R(Y ) of pos-
sible values for Y (i.e., the set of values over which Y
ranges). For simplicity, we assume here that V is finite, as is
R(Y ) for every endogenous variable Y ∈ V . F associates
with each endogenous variable X ∈ V a function denoted
FX (i.e., FX = F(X)) such that FX : (×U∈UR(U)) ×
(×Y ∈V−{X}R(Y )) → R(X). This mathematical notation
just makes precise the fact that FX determines the value of
X , given the values of all the other variables in U ∪ V .

The structural equations define what happens in the pres-
ence of external interventions. Setting the value of some
variable X to x in a causal model M = (S,F) results in a
new causal model, denotedMX←x, which is identical toM ,
except that the equation for X in F is replaced by X = x.

We can also consider probabilistic causal models if we
want to talk about the probability of causality (and, for our
purposes, the probability of discrimination). A probabilistic
causal model is a tuple M = (S,F ,Pr), where (S,F) is a
causal model, and Pr is a probability on contexts.

The dependencies between variables in a causal model
M = ((U ,V,R),F) can be described using a causal net-
work (or causal graph), whose nodes are labeled by the en-
dogenous and exogenous variables in M , with one node for
each variable in U ∪ V . The roots of the graph are (labeled
by) the exogenous variables. There is a directed edge from
variable X to Y if Y depends on X; this is the case if there
is some setting of all the variables in U ∪V other thanX and
Y such that varying the value ofX in that setting results in a
variation in the value of Y ; that is, there is a setting ~z of the
variables other than X and Y and values x and x′ of X such
that FY (x, ~z) 6= FY (x

′, ~z). A causal model M is recursive
(or acyclic) if its causal graph is acyclic. It should be clear
that if M is an acyclic causal model, then given a context,
that is, a setting ~u for the exogenous variables in U , the val-
ues of all the other variables are determined (i.e., there is a
unique solution to all the equations). In this paper, follow-
ing the literature, we restrict to recursive models. We call a
pair (M,~u) consisting of a causal model M and a context ~u
a (causal) setting.



3 A Regulatory Framework
In this section we provide more detail about how we expect
the regulatory framework to work.

Sensitive variables: We assume that, for each application,
the regulator has an initial set of sensitive variables (race,
gender, and so on), typically determined by the law, and a
causal graph that includes these sensitive variable and per-
haps some ancestors of these variables. The complete set of
sensitive variables consists of this initial set and all the an-
cestors of variables in the initial set, according to the causal
graph. The technical reason for closing off the set of sensi-
tive variables under ancestors is, as we mentioned in the in-
troduction, to deal better with proxy variables. Fortunately,
in practice, it does seems reasonable to treat ancestors of
sensitive variables as sensitive. If religious affiliation is sen-
sitive, it seems reasonable to also view religious affiliation
of parents as sensitive, that is, a variable whose value cannot
be used in making the decision.

The bank’s network: The bank can then build its own AI
software. Note that we can view a neural network as a causal
graph. The inputs to the network can be viewed as exoge-
nous variables; the internal nodes are endogenous variables,
whose values are determined from the values of its parents
using some function (e.g., a softmax).

While the neural network does not, strictly speaking, have
a semantic causal interpretation, we claim that we can still
view the network as a causal graph. The causal dependence
of the bank’s decision on whether to approve the loan is
indeed caused by the values of the inputs to the network.
Moreover, the neural network can be viewed as describing
causal dependencies between variables, and allows us to de-
termine the effect of interventions on its variables; this is
exactly what we need for our purposes.

The bank is assumed to have access to the regulator’s
causal graph and can use some of the variables in the graph
in constructing its causal network. However, it must use the
same causal equations for the sensitive variables as the reg-
ulator uses. Intuitively, this means that the variables must
have the same meaning for the regulator and the bank. We
assume that among the output values (i.e., leaves) of the
bank’s causal network is the decision. All our definitions are
with respect to a particular decision. The network can have
several decision variables, and it can be fair with respect to
some of them and unfair with respect to others.

Allowed variables: After the software is built, the bank
may ask the regulator to consider certain variables as al-
lowed. The bank will have to make a a case for this; as we
suggested in the introduction, we expect the case to have
the same form as that currently made to justify a practice
having disparate impact in American law. Namely, the bank
would have to show that considering these variables is jus-
tified by “business necessity”. For example, the bank might
argue that, if it is not allowed to take salary into account,
the decisions made would be so bad that the bank would just
stop making loans altogether. The bank will have to collect
data to back this up. But we should note that what counts
as appropriate justification of disparate impact standard is

widely disputed. It may be far from obvious what the “right”
thing is to do. Consider an example taken from Kleinberg et
al. (2018b):

A state government is hiring entry-level budget
analysts. It gives a preference to applicants from the
prestigious colleges and unversities, because these ap-
plicants have done best in the past. This has a dispro-
portionate adverse effect on African-American appli-
cants.

Should the variable university rank be allowed? A strong
business case would have to be presented. This observation
suggests that if a system with certain allowed variables is
judged to be fair, and some groups feel that it is nonetheless
discriminatory, the regulator’s choice of allowed variables
might serve as the basis for a legal challenge.1 Despite the
difficulty of doing this, and the potential for lawsuits, we be-
lieve that the regulator will ultimately need to decide which
variables to treat as allowed (perhaps with inputs from vari-
ous interested parties).

Proxy variables: As we said, we expect the regulator to
treat the bank’s software as a “grey box”. But it will need
to be told all the input variables and how they are obtained.
The main reason for needing to know the input variables is
to test for proxy variables. As we pointed out in the introduc-
tion, while we can deal with proxy variables that are descen-
dants of sensitive variables (see also below), we will also
have to deal with proxy variables such as religious holidays
celebrated that the bank uses as inputs (i.e., exogenous vari-
ables). We do not see any way of checking this other than by
checking, for each sensitive variable, whether some subset
of input variables gives inappropriate information about the
sensitive variables.

We formalize this below, but before going on, we should
stress that the concern about proxy variables used by a sys-
tem being correlated with sensitive variables is a real one,
that has been shown to arise in practice. For example, Datta
et al. (2015) showed that the AI system used by Google to
decide which job ads to show users makes some discrimi-
natory decisions. When users provided gender information
on the Ad Settings page, Datta et al. showed that simulated
users who indicated that they were male received ads that
promised large salaries more frequently than simulated fe-
male users. But Google clearly used as input more than just
the Ad Settings to decide which ads to show to each user.
The kind of ads shown depended in large part on the web
pages visited by the user. Clearly, the web pages visited can
be a proxy for gender. For example, the bloggers that the
user follows, use of particular keywords in the user’s posts
on social media, and the user’s shopping activity can all be
used to infer gender. Each variable separately might not have
a high correlation with gender, but together they might indi-
cate with a high degree of certainty that the user is female.

1To give just one real-world example of the difficulty of de-
ciding what should be allowed, as pointed out by Kleinberg et al.
(2018b), there are ongoing debates and studies regarding whether,
in our language, it is reasonable to take the variable prior incarcer-
ation record to be allowed. Does it help or hurt willingness to hire
black applicants? (See, e.g., (Agan and Starr 2018).)



In addition to gender, which is clearly a sensitive attribute
and should not influence the job ads shown, Datta et al. also
found that ads shown depend on whether the user visits cer-
tain webpages associated with substance abuse. Here it is
less clear whether this should be illegal, as Google might ar-
gue that substance abuse is highly correlated with inability
to keep a high-responsibility (and high-paying) job. In the
language of this paper, Google might argue that substance
abuse should be an allowed variable; it is then up to the reg-
ulator to approve or deny this request.

There are a number of plausible definitions of what it
means for the bank’s input variables give inappropriate in-
formation about sensitive variables. We consider two re-
quirements that we believe capture the intuition:

• For some sensitive variable X , the event X = x is in-
dependent of ~Y = ~y, where ~Y is the set of disallowed
variables, for all settings x of X and ~y of ~Y .

• For some sensitive variable X = x, X is conditionally
independent of ~Y = ~y given ~A = ~a, where ~Y is the
set of disallowed variables and ~A is the set of allowed
variables, for all settings x of X , ~y of ~Y , and ~a of ~A.

The first condition says that knowing the values of disal-
lowed variables does not give any information about the
values of sensitive variables. Now, by assumption, the al-
lowed variables do give information about the sensitive vari-
ables (e.g., knowing the salary of an applicant gives some
information about the applicant’s gender). Thus, the second
condition says that knowing the values of disallowed vari-
ables does not give any information about the values of sen-
sitive variables beyond what is given by the allowed vari-
ables. Note that information is not “additive”. The fact that
the bank cannot predict the values of sensitive variables just
from disallowed variables does not mean that it cannot pre-
dict the values of sensitive variables better using the allowed
and disallowed variables than it could from the allowed vari-
ables alone. For example, if pet ownership (a disallowed
variable) is distributed equally between women and men, but
is highly correlated with salary (an allowed variable) for men
and not at all for women, then pet ownership alone does not
give any information about gender, but together with salary
it can determine gender with a higher degree of certainty
than salary alone.

While this is the high-level intuition we want to enforce,
what does the regulator actually check? That is, what prob-
ability distribution is it going to use to determine indepen-
dence? We believe that, in practice, the regulator will have to
use the probability distribution determined by the bank’s ap-
plicants. Of course, the distribution determined by this sam-
ple may not be a completely accurate description of the dis-
tribution of the actual population (e.g., there might be some
self-selection about who applies for a loan) and may not
have enough data to determine all the relevant independen-
cies. For example, for some setting ~y of ~Y , there may not
be enough applicants that have inputs ~Y = ~y to determine
whether X = x is independent ~Y = ~y. In any case, it seems
unreasonable to expect complete independence in the sam-
ple; the regulator should have a threshold of acceptability.

Finally, it may be the case that for many settings ~Y = ~y

(and ~A = ~a), the bank does not have enough data to be able
to reliably determine whether the relevant event are (almost)
independent. The following definition is a first pass at mak-
ing precise what we require, where Pr now represents the
sample distribution, sd(X) is the standard deviation of X ,
and ε is some regulator-defined threshold. (The final defini-
tion is a slight generalization.)

Definition 1 (Preliminary version:) A system has no disal-
lowed proxy variables (at threshold ε) if the following con-
ditions hold:

(a) For all sensitive variables X , for all subsets ~Y ′ of disal-
lowed variables, all settings x of X , and all settings ~y′ of
~Y ′ such that Pr(~Y ′ = ~y′) is sufficiently large to deter-
mine statistical independence,

|Pr(X = x)− Pr(X = x | ~Y ′ = ~y′)|
sd(X)

< ε.

(b) For all sensitive variables X , for all subsets ~Y ′ of disal-
lowed variables, for all subsets ~A′ of allowed variables,
all settings ~y′ of ~Y , all settings x of X , and all settings
~a′ of ~A′ such that Pr(~Y ′ = ~y′ ∩ ~A′ = ~a′) is sufficiently
large to determine statistical independence,

|Pr(X = x | ~A′ = ~a′)− Pr(X = x | ~Y ′ = ~y′ ∩ ~A′ = ~a′)|
sd(X)

< ε.

The standard deviation sd(X) serves as a normalizing factor
here; we are computing whether using the disallowed vari-
ables gives more than an ε fraction of a standard deviation
of extra information.

Definition 1 can be visualized as dividing the applicants
into “buckets”, where each bucket corresponds to a setting
of some disallowed variables, and then checking whether
there are buckets that are sufficiently large to be meaningful
and have a distribution of sensitive variables that is differ-
ent from the whole dataset. This check is only meaningful if
the bucket is large enough, which might not be the case for
very many buckets. We can get a somewehat more general
definition by allowing buckets to be combined. Formally,
“combining two buckets” simply mean conditioning on their
union. That is, rather than just conditioning on ~Y ′ = ~y′

in Definition 1, we consider subsets ~Y 1, . . . , ~Y k and values
~y1, . . . , ~yk, and condition on (~Y 1 = ~y1 ∪ . . . ∪ ~Y k = ~yk)

(or (~Y 1 = ~y1 ∪ . . . ∪ ~Y k = ~yk) ∩ ~A′ = ~a′ in part (b)).
We take this to be the official definition of having no disal-
lowed proxy variables. Note that an important special case
of this is abstracting values. For example, if Y is the vari-
able age, rather than just conditioning on age = 37, we can
condition on the range age ∈ {30, . . . , 40} (which is just
age = 30 ∪ . . . ∪ age = 40).

Certifying a system as fair: To certify a system as fair,
the regulator must conduct a number of checks. The first
few involve the bank’s input variables. We already discussed
an important check above: checking that the system has no



disallowed proxy variables. The regulator must also check
that the system input variables are being used as the bank
claimed that they were. Recall that we require the bank to
reveal how the input variables are obtained. The regulator
will need to check whether all inputs are obtained appropri-
ately. For example, is the bank allowed to scrape social me-
dia posts? The regulator should be able to check fairly easily
that the information can be obtained just as the bank claims,
and then check that all the input variables are indeed com-
puted as they should be. To understand why this is critical,
consider the following example.

Example 1 Since it gets salary information in many differ-
ent currencies, the bank convinces the regulator that, not
only should salary be allowed, but it should be able to con-
vert all information regarding salary to internal units of cur-
rency (according to agreed-upon conversion rates). But in
doing the conversion, the bank slightly modifies the salary,
replacing the low-order number by either 0 or 1, depending
on whether the applicant is male or female. For example, a
salary of 87,325 (in the bank’s internal units) would become
either 87,320 or 87,321, depending on whether the applicant
is male or female. This means that the bank can completely
base its decision on gender. This is precisely why the regu-
lator needs to know how all the input variables in the bank’s
system are calculated from data. If the regulator knows this,
she should be able to spot the discrepancy above. But this
will clearly require an alert regulator!

Finally, the regulator must check that there are no inputs
being used other than those listed by the bank and that the
endogenous sensitive variables are computed correctly (ac-
cording to the equations specified by the regulator). As we
said, we assume that the regulator has access to the input
data for all applicants. (It actually suffices that she can get
data for a reasonably large random subset of applications.)
To ensure that she is testing all the relevant variables in the
tests discussed above, the regulator can test that setting the
inputs appropriately gives the decision taken by the bank.
Similarly, she can check that she gets the expected answers
for endogenous sensitive variables. The fact that the bank
will be monitored in this way should suffice to prevent it
from using undeclared inputs or altering the equations of en-
dogenous variables.

With all these tests of the input variables out of the way,
the regulator can now check that there is no discrimination in
the more standard sense, namely, checking whether chang-
ing the values of sensitive variables has any impact on the
decision, once we fix the allowed attributes. This is a way
of making precise a claim like “gender has no impact on the
decision, beyond its impact on allowed variables (such as
salary)”. Since we assumed that the set of sensitive variables
is closed under ancestors, it suffices to ensure that changing
the values of exogenous sensitive variables has no impact on
the decision. (Indeed, we may not want to simultaneously
change the values of two sensitive values, one of which is a
child of another, if doing so would result in an inconsistent
situation.) Consider, for example, a model in which there is
an endogenous sensitive variable goes to church regularly,
with range {Y,N}, and its exogenous parent religious affil-

iation, with range corresponding to the common religious
affiliations. According to our observation, the religious af-
filiation variable is also sensitive, and changing both at the
same time does not make sense, as it might lead to incon-
sistent situations, such as religious affiliation=Judaism and
goes to church regularly=Y.
Definition 2 A model M and a causal variable D of M
are fair with respect to a set ~Y of allowed variables and a
set ~X of exogenous sensitive variables if, for all contexts ~u,
changing the values of the sensitive variables has no effect
on the value of D if the allowed variables are fixed to their
values in ~u.2

Our definition differs from other causal definitions of fair-
ness (e.g., (Kilbertus et al. 2017; Kusner et al. 2017; Lof-
tus et al. 2018)) in one significant respect. Other definitions
of fairness are statistical. They require only that the proba-
bility of the decision D having a certain value is the same
for all settings of the sensitive variables. This difference is
mainly due to our application. We assume that the values
of all the exogenous variables are known (since they rep-
resent inputs to the bank’s system); in the other papers, it
is assumed that all that is known about the contexts is their
probability. Given that we take the values of exogenous vari-
ables to be known, we believe that our choice is appropriate
for our application.

Dealing with complaints: Suppose that the bank’s sys-
tem is certified as fair, yet someone brings a complaint of
discrimination. The bank should be able to provide all the
inputs used for that person. The regulator can verify that
all input variables were computed appropriately, that all the
endogenous sensitive variables get the appropriate values,
and that the bank’s software really does produce the result
claimed by the bank for these values. If, despite this, the
regulator finds that the complaint has merit, she can then see
the affect of disallowing some allowed variables, to try to
pinpoint what is causing a perhaps undesirable result. We
anticipate that complaints may result in pressure to disallow
some allowed variables.

Changing the status of variables: While the AI system is
created and maintained by the bank, variables are defined as
sensitive or allowed by the regulator; their status may change
over time. For example, the Equal Credit Opportunity Act
(ECOA) of 1974 prohibited creditors from discrimination on
the basis of race, color, religion, national origin, sex, marital
status, or age, thus making these attributes sensitive vari-
ables. Not all cases of such changes require re-certification,
but some do. It is fairly straightforward to see that declar-
ing a previously non-sensitive variable sensitive can render
a previously fair system unfair. Indeed, this probably hap-
pened with many bank systems in 1974. It is also easy to
see that if a previously sensitive variable is declared non-
sensitive, then a system that was previously fair continues to
be fair (and a system that was unfair may become fair).

2This can be expressed formally in the logic of causality
(Halpern 2016) as: there is a value d in the range of D such that for
all settings ~x of ~X , we have (M,~u) |= [ ~X ← ~x; ~Y ← ~y](D = d),

where ~y are the values of ~Y in context ~u; that is, (M,~u) |= ~Y = ~y.



The effect of changing the status of allowed variables
is somewhat less obvious. In fact, both changing the sta-
tus of a previously disallowed variable to allowed and mak-
ing a previously allowed variable disallowed can change the
status of the system from fair to unfair or the other way
around. Consider a loan application system with two binary
exogenous variables: a sensitive variable gender, with val-
ues {M,F}, and a non-sensitive variable (loan application)
amount, with values {low, high} (we make both variables bi-
nary for ease of exposition). The endogenous variable salary
has, again, two values, {low, high}, and the decision is “yes”
if amount=low or salary=high. Now we assume that the
equation for salary sets salary to low if gender=F and to
high otherwise. If salary is not an allowed variable, the sys-
tem is clearly unfair: in the context of a woman applying for
a high loan amount, the decision is “no”, yet toggling the
gender to M changes the decision to “yes”. Changing the
status of the salary variable to allowed, however, makes the
system fair, as the gender only affects the decision via salary.

Perhaps a more surprising observation is that making a
previously disallowed variable allowed can make a previ-
ously fair system unfair. Suppose that we add a new endoge-
nous binary variable impulsivity to the system above, which
is low if gender=F and high otherwise, and change the equa-
tion for the decision to be “yes” if either salary=high or im-
pulsivity=low. It is easy to see that the system approves all
loan applications, and if there are no allowed variables, it is
fair. If salary now becomes an allowed variable, the system
stops being fair: if gender=F and we toggle gender while
keeping salary fixed to low, impulsivity becomes high, and
the loan is not approved.

4 Complexity
Clearly, for the regulator to certify a system, she will have
to be able carry out all the checks in a reasonable amount
of time. We assume that the regulator can run the bank’s
software on a specific input (i.e., for a particular applicant)
to see what the outcome would be, and do so in polynomial
time. The following results seems to suggest that checking
for fairness will be difficult. Importantly, they hold even if
there are relatively few sensitive variables (which is likely
to be the case in practice).

Theorem 4.1 Deciding if a system M is fair with respect
to sensitive variables ~X and allowed variables ~Y is co-NP-
complete. (More precisely, if Lfair is the language consist-

ing of all tuples 〈M,D, ~X, ~Y 〉 such that the model M and
a causal variable D of M are fair with respect to the set ~X
of sensitive variables and set ~Y of allowed variables, then
Lfair is co-NP-complete.) This is true even if the number of
settings of exogenous sensitive variables is bounded.

Proof. To see that checking for fairness is in co-NP, it suf-
fices to check that the complementary problem, is in NP.
To check for unfairness we simply have to guess a setting
of the exogenous variables (which amounts to guessing the
features of an applicant), and guess two settings of the ex-
ogenous variables that give different values for D.

To show that checking fairness is co-NP hard, we re-
duce the problem of checking whether a propositional for-
mula φ is valid to the problem of checking fairness. Given
a propositional formula φ whose primitive propositions are
X1, . . . , Xn, construct a causal model Mφ where the non-
sensitive binary input variables are X1, . . . , Xn, there is
only one sensitive exogenous binary variable, X0, only one
endogenous variable, D, and no allowed variables. The
equation for D is D = 1 if X0 = 0, and D = φ if X0 = 1.
Since there are no allowed variables, this system is fair iff
φ = 1 (i.e., φ is true) for every setting of the variables
X1, . . . , Xn. But this is the case iff φ is valid.

As complaints would typically originate from one per-
ceived case of discrimination, the regulator might have an
easier task checking a complaint than certifying the whole
system. Checking fairness with respect to a specific context
can have lower complexity than checking fairness of the sys-
tem in general. In order to reason about this complexity for-
mally, we introduce the following definition of fairness with
respect to a specific case (context).

Definition 3 A model M and a causal variable D of M are
fair with respect to a set ~Y of allowed variables and a set ~X
of exogenous sensitive variables in a context ~u if changing
the values of the exogenous sensitive variables has no effect
on the value of D when the allowed variables are fixed to
their values in ~u.

Here there is some good news. Although the problem con-
tinues to be co-NP-complete, the co-NP-completeness stems
completely from the number of possible settings of the sen-
sitive variables (since we have to check that the value of the
decision variable is unaffected if we change the values of the
sensitive variables). If we assume, as will almost certainly
be the case in practice, that there are relatively few sensitive
variables and that they have relatively few values, we can do
a brute force check in polynomial time.

Proposition 4.2 Let L~ufair be the language of all tuples

〈M,D, ~X, ~Y 〉 such that the model M and a causal variable
D of M are fair with respect to the set of sensitive variables
~X and the set of allowed variables ~Y in context ~u. For a fixed
context ~u, the decision problem for L~ufair (i.e., determining
whether the system is fair for the applicant represented by
~u) is co-NP-complete, but is polynomial in the number of
settings of the exogenous sensitive variables.

Proof. Given a context, we can consider all settings of the
exogenous sensitive variables, and ensure that the decision
value D has the same value in all contexts resulting from
these settings. This is clearly polynomial in the number of
settings of the exogenous sensitive variables.

If there is no bound on the number of sensitive vari-
ables, then the problem is still clearly in co-NP (this is a
special case Theorem 4.1). To show co-NP hardness, we
again reduce the validity problem to the problem of checking
fairness. Given a propositional formula φ whose primitive
propositions are X1, . . . , Xn, we construct a causal model
Mφ, where the only exogenous variables are the sensitive
variables X0, . . . , Xn, where X1, . . . , Xn are the variables



of φ and X0 is a fresh variable, and there is one endogenous
variable D, whose equation is X0 ∨φ. This system is fair iff
D has the same value for all settings of the exogenous vari-
ables. If X0 = 1, then D = 1, so we must also have D = 1
if X0 = 0. But this means that for all sets of X1, . . . , Xn,
D = 1. This is the case iff φ is valid.

Proposition 4.2 already suggests why in practice, the co-
NP-completeness of checking fairness will not be a big prob-
lem in practice, assuming that the number of settings of sen-
sitive variables is small. Checking fairness for a particular
individual can be done quickly. Thus, the regulator can eas-
ily sample a relatively large number of applicants and ver-
ify that fairness holds for all of them (more precisely, she
would verify that fairness holds of the context determined by
each applicant’s inputs). Why is this compatible with Theo-
rem 4.1? To verify that the formula is valid, we must check
all possible settings of the primitive propositions in the for-
mula. If the bank’s system uses, say, 1000 input variables,
even if they are binary, there are 21000 settings of these vari-
ables, far more than the number of applicants. We care only
about the settings that actually arise for applicants.

There is another check that the regulator must perform:
checking that there are no disallowed proxy variables.
Again, we believe that this will not be a problem in prac-
tice. Note that whether there are disallowed proxy variables
depends on features of the applicants; that is, it is not an
intrinsic property of the causal graph, but a property of the
data. We believe that, given n applicants, or, more precisely,
given all the input variables, including exogenous sensitive
variables, for n applicants, we should be able to check in
time polynomial in n whether there are disallowed proxy
variables. We believe that, specifically, we should be able to
write a machine learning program to see if the disallowed in-
put variables give information about the sensitive variables,
or if the disallowed and allowed input variables give in-
formation beyond that given just by the allowed variables
(above threshold ε).

There is a concern that the bank might have a better ma-
chine learning program than the regulator, so that the regula-
tor might not detect any correlation between the disallowed
variables and the sensitive variables, but the bank’s program
can. This is clearly a topic that requires further investigation.

We remark that the other checks that the regulator needs
to carry out, checking that the input variables are computed
correctly, that there are no input variables beyond those ex-
plicitly given by the bank, and that the endogenous sensitive
variables are computed correctly, can clearly be carried out
in polynomial time. For the second check, we need to as-
sume that the regulator can check, for a random subset of
applicants, that if she sets the input variables that she was
told about appropriately, then she gets the same outcome as
the bank did. (If there were additional random variables that
had a nontrivial effect on the outcome, then this would not
be the case.)

On what dataset should the regulator run the checks we
describe in the paper? We expect there to be a wealth of
historical data that is used by the bank to train its AI sys-
tem. The regulator can request the same training set as the
bank uses and run the initial checks on that set. The regula-

tor should then request all the applicant data after the bank
starts running its system, and do periodic checks on (a sam-
ple of) that data. Note that the bank can try to fool the reg-
ulator initially, by omitting applicants from the dataset that
would demonstrate that there are disallowed proxy variables.
But as long as the regulator has access to all the applicants,
that problem should be spotted relatively quickly. And if the
bank does not share all the applicant data, this will be dis-
covered when someone complains. We assume that there is
a system of fines and sanctions that would discourage this
type of “cheating”. Of course, it is possible that the bank’s
initial dataset is not representative of later data for legitimate
reasons. For example, there may be changes in the legal pro-
cess for applying for a loan application. But then we would
expect the bank to have to (and be able to) justify why the
initial dataset is not representative.

As these results suggest, regulators should be able to cer-
tify a bank’s system in a reasonable amount of time, despite
the initially discouraging complexity results, although more
work needs to be done to develop algorithms for verifying
that a system has no proxy variables.

5 Conclusions
Assuring fairness of AI algorithm is a relatively recent sub-
ject, but it has already attracted a lot of attention, due to the
ever-increasing use of AI to make decisions. We believe that
there will be pressure to regulate this activity. Companies
may even welcome this regulation, to avoid getting sued for
their practices. Indeed, a number of large companies recently
released packages to detect certain types of unfairness in the
form of bias or under-representation (e.g. IBM’s AI Fair-
ness 360 (IBM 2018) and Facebook Fairness Flow (Face-
book 2021)). These packages are not a general attempt to
provide a regulatory framework; they have tailor-made rou-
tines to check for particular types of discrimination. But this
does demonstrate that industry is aware of the problem and
is taking preliminary steps. There has also been work on dis-
covering discrimination against individuals (Zhang, Wu, and
Wu 2016; Bonchi et al. 2017; Kilbertus et al. 2017; Zhang,
Wu, and Wu 2019). (Recall that in our setting, this can be
checked easily.)

In this paper, we make a first attempt to define such a
regulatory framework, with definitions and criteria that can
be verified and supported by evidence. While the worst-case
complexity of certifying fairness may appear high, in prac-
tice, we expect that the certification process will be quite
fast and efficient. Of course, not everyone will agree with
all the choices we have made here, and some may feel that
more (or less) regulation should be required. We welcome
discussion of these issues. We believe that it is important
for the AI community to take the lead here, and help guide
policy-makers in coming up with ways to certify software
as acceptable. We hope that our work provides a useful first
step in this direction.
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