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Abstract

This paper proposes a method for measuring fairness through equality of effort by applying
algorithmic recourse through minimal interventions. Equality of effort is a property that can be
quantified at both the individual and the group level. It answers the counterfactual question:
what is the minimal cost for a protected individual or the average minimal cost for a protected
group of individuals to reverse the outcome computed by an automated system? Algorithmic
recourse increases the flexibility and applicability of the notion of equal effort: it overcomes
its previous limitations by reconciling multiple treatment variables, introducing feasibility and
plausibility constraints, and integrating the actual relative costs of interventions. We extend
the existing definition of equality of effort and present an algorithm for its assessment via
algorithmic recourse. We validate our approach both on synthetic data and on the German
credit dataset.

1 Introduction

Machine Learning systems are increasingly used in many socially significant applications, such
as loan approval, hiring decisions, legal processes, and healthcare, sometimes encoding existing
human and historical biases, as well as generating new biases through their algorithms. Fairness is
commonly defined as the absence of any prejudice or favoritism toward an individual or group based
on their inherent or acquired characteristics [1]. The algorithmic fairness literature is growing quickly,
but the corresponding conceptualization and applicability need further study and structure [2]. For
instance, the prevalent correlation-based fairness algorithms fail to detect discrimination in the
presence of statistical anomalies such as Simpson’s paradox [3].

Group fairness notions, mainly based on statistical measures, are aimed at ensuring that groups
who differ in their sensitive attributes (e.g. sex, ethnicity, religion) are treated equally or at
least similarly [4]. However group fairness, despite its suitability for policies among demographic
sub-populations, does not guarantee that individuals are treated fairly and is not suitable for
fine-grained groups [5].

In the disparate treatment liability framework (as opposed to disparate impact), discrimination
claims require proof of a causal connection between the challenged decision and the sensitive feature.
Therefore, causality is becoming a fundamental tool in analyzing fairness of a decision [3]. Causal
fairness notions are not based exclusively on data but also consider the causal structure of the
world, describing how data is generated and how changes in variables propagate in a system.

Ideally, an automated system should produce the same output for every pair of individuals who
differ only in their sensitive attributes. This concept is developed in [6] as a measure of causal
discrimination, i.e. the fraction of inputs for which software discriminates. More generally, fairness
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through awareness requires that similar individuals will get similar outcomes [7]. Similarity can
be defined with respect to a specific task and is based on a trustworthy distance metric between
individuals and a distance metric between probability distributions. This notion shows interesting
developments for privacy purposes. Similarly, individual direct discrimination considers a target
individual discriminated against if the difference observed between the rate of positive decisions for
similar individuals in two groups: (1) sensitive (or protected) and (2) privileged (or unprotected),
is higher than a predefined threshold [8].

Using similarity measures among individuals, [9] introduces the notion of equality of effort,
that can help answer counterfactual questions like by how much should an applicant’s credit score
improve so that their loan application is approved?, and judge discrimination from the perspective
of equal effort among groups. Equality of effort establishes whether the effort to reach a certain
outcome is the same for the protected and unprotected groups. A treatment variable is studied as
to what change is required for an individual or group to achieve a certain outcome [9]. A similar
direction is pursued in [10] with a focus on characterizing the long-term impact of algorithmic
policies on reshaping the underlying populations.

We propose a novel way of estimating equality of effort by applying algorithmic recourse:
the actions with minimal costs required for reversing unfavorable decisions by algorithms and
bureaucracies across a range of counterfactual scenarios [11]. This has several advantages due to the
flexibility of the approach in defining feasibility and plausibility constraints on variables, as well as
in expressing the minimal cost required to change the outcome. In particular, algorithmic recourse,
by including multiple treatment variables and integrating uniquely defined costs of interventions (e.g.
relative or asymmetric), increases the expressiveness of the concept of equality of effort. Fairness of
recourse was already shown to be complementary to counterfactual fairness of prediction in [12],
where the cost of recourse for an individual is compared to the cost of recourse for its counterfactual
twin (i.e. a virtual individual with a counterfactual change of the sensitive variable). This opens
opportunities to alternative solutions to unfairness issues by societal interventions, as opposed to
the direct modification of the classifier as in [13].

In §2 and §2.2 we introduce the concepts of equality of effort and algorithmic recourse, respec-
tively; in §3 we develop our approach and outline our algorithm; in §4 we present results both
on synthetic data and on the German credit dataset; finally in §5 we conclude with suggested
extensions to our method.

2 Background

2.1 Equality of effort

Unlike most causal fairness notions, which intervene on the sensitive attribute S /∈ X, equality of
effort intervenes on a treatment variable T ∈ X, where X is the set of covariates. We note that any
actionable variable in X can be considered as a possible treatment. The definition in [9] belongs to
the potential outcome framework:

Definition 1 (γ-Minimum Effort [9]) For individual i with value (si, ti,xi, yi), given the inter-
vention: Yi(t) = (Yi|do(ti = t)) and a scalar γ ∈ [0, 1], the minimum value of the treatment variable
to achieve γ-level outcome is defined as 1

Ψi(γ) = argmin
t∈T

{E[Yi(t)] ≥ γ} (1)

and the minimum effort to achieve γ-level outcome is Ψi(γ)− ti.
1E denotes the expectation mathematical operator.
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The strategy proposed in [9] is based on situation testing2 and the definition of a similarity to
form a subset of individuals, I = I+ ∪ I−, each of whom shares the same or similar characteristics
(x and t) as individual i [8]. We denote by I+ and I− the subgroups of elements in I with the
binary sensitive attribute value S = s0 and S = s1, respectively. The derivation of the expected
outcome under treatment T = t of the two groups, E[YI+(t)] and E[YI−(t)] leads to a comparison
of the γ-minimum efforts, ΨI+(γ) and ΨI−(γ), with

ΨI∗(γ) = argmin
t∈T

{E[YI∗(t)] ≥ γ} (2)

Equality of effort is achieved when the effort discrepancy ΨI+(γ)−ΨI−(γ) between the two sets of
individuals/groups is null.

Definition 2 (Equality of Effort) For a given level γ, there is an equality of effort for individual
i if ΨI+(γ) = ΨI−(γ). The difference δ(γ) = ΨI+(γ)−ΨI−(γ) measures the effort discrepancy at
the individual level.

This definition can be extended to define effort discrepancies at a subgroup level or at the system
level, if, instead of an individual i, we consider specific subgroups or the whole dataset, D+ and
D−.

Definition 3 (Average Effort Discrepancy (AED)) If γ ∈ Γ, where Γ is a discrete value set
of the minimum expectation of the outcome variable, the Average Effort Discrepancy is defined as

AED =
1

|Γ|
∑
γ∈Γ

δ(γ); if γ ∈ [γ1, γ2] is continuous, AED =
1

γ2 − γ1

∫ γ2

γ1

δ(γ)dγ.

The work in [9] is based on counterfactual causal inference and develops an optimization-based
framework for removing discriminatory effort unfairness from the data if discrimination is detected.
Definition 3 is based on the assumptions of no hidden confounders [14], monotonicity of the
expectation of the outcome variable, invertibility of the outcome function, the presence of one
binary protected attribute and one binary decision. When the invertibility assumption does not
hold, causal inference methods such as outcome regression and propensity score inverse weighting
are used to estimate the average treatment effect in the subgroups I+ and I− . The main limitation
of equality of effort is that, generally, a single treatment variable does not appropriately reflect the
unfairness between protected and unprotected groups.

2.2 Algorithmic recourse

We find the definition of recourse through minimal interventions in [11], as opposed to recourse via
nearest counterfactual explanations in [15], to be particularly suited to our problem of deriving
the individual cost to achieve a certain outcome. Assuming causal sufficiency of the structural
causal model M (i.e., no hidden confounders), additive noise, and full specification of an invertible
F such that F(F−1(x)) = x, endogenous variable X can be uniquely determined given the values of
exogenous variables U (and vice-versa, given the invertibility of F). The outcome Y is related to
the variables X by a function h(·): Y = h(X).

Definition 4 (Algorithmic recourse via minimal interventions (MINT) [11]) is an opti-
mization problem which minimizes the cost of the set of actions A (in the form of structural

2Situation testing is a legally grounded technique for analyzing the discriminatory treatment on individuals [8].
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interventions on the factual instance xF ) that results in a structural counterfactual instance xSCF

yielding the favorable output from h:

A∗(xF ) ∈ argmin
A

cost(A;xF ) s.t.

h(xF ) ̸= h(xSCF )

xSCF = FA(F−1(xF ))

xSCF ∈ P, A ∈ F

(3)

with cost(·;xF ) : F × X → R+ and x∗SCF = FA∗(F−1(xF )). We can deterministically compute
the counterfactual xSCF = FA(F−1(xF )) by performing the Abduction-Action-Prediction steps
proposed by [14]. If J is the set of variables that have been intervened upon,

xSCF
j = [j ∈ J ](xFj + δj) + [j /∈ J ](xFj + fj(pa

SCF
j )− fj(pa

F
j )) (4)

Equation 4 holds for an additive noise model with mutually independent exogenous variables. The
structural counterfactual value of the j-th feature, xSCF

j , takes the value (xFj + δj) if this feature is
intervened upon. Otherwise, xSCF

j is computed as a function of both the factual and counterfactual
values of its parents, denoted respectively by paFj and paSCF

j . The closed-form expression in
Equation 4 can replace the counterfactual constraint in Equation 3, i.e., xSCF = FA(F−1(xF )), after
which the optimization problem in Equation 3 may be solved by building on existing frameworks for
generating nearest counterfactual explanations [15], including gradient-based, evolutionary-based,
heuristics-based, or verification-based approaches.

An example of cost provided by [11] for Equation 3 is the ℓ1 norm over normalized feature
changes to make effort comparable across features, i.e.

cost(δ) =
∑
j∈J

|δj |/Rj , where Rj is the range of feature j. (5)

3 Equality of effort via algorithmic recourse

The authors in [9] limit their algorithms to changing one variable and do not consider weighted
versions of the problem, representing the cost and/or the effort required in order to change the
value of a variable.

The recourse-based approach has several advantages. We can consider the treatment variable
T ∈ X in Section 2 as part of the feasibility constraints in algorithmic recourse, where we can
declare which features are immutable, mutable but non-actionable, and actionable (we can intervene
directly on them), and we can also add bounds to define feasible interventions (e.g. age can only
increase). Note that in [9] only one treatment variable is considered, whereas algorithmic recourse
allows us to extend the interventions to multiple treatment variables, T ⊆ X, included in the
feasibility constraint F . Moreover, the calculation of the counterfactual instances allows us to
propagate the effect of the change of the treatment variables throughout the structural causal model
(cf. Equation 4), and to introduce plausibility constraints on the affected covariates. Finally, the
relative costs of changing different variables can be easily reflected in the cost function as weights.

Definition 5 (Average Minimal Effort) For an individual i belonging to the sensitive group
S = s0, we can define an Average Minimal Effort in its neighborhood subsets I+ ⊂ I (where S = s0)
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and I− ⊂ I (where S = s1):

ΦI+ =
1

|I+|
∑
x∈I+

cost(A∗(x)) x ∈ I+ (6)

ΦI− =
1

|I−|
∑
x∈I−

cost(A∗(x)) x ∈ I− (7)

where A∗ is given by Equation 3 and |I∗| denotes the cardinality of I∗.

Definition 6 (Equality of Effort via Algorithmic Recourse) We say that there is an equality
of effort for an individual i if ΦI+ = ΦI−. The ratio Φ = ΦI+/ΦI− measures the Average Cost
Ratio (ACR) at the individual level.

We say that recourse is possible for an instance x if there exists A∗(x) that is a solution to the
recourse problem in Equation 3.

Definition 7 We define the Ratios of Possible Recourse for an individual i as

ρI+ =
∑
x∈I+

I{∃A∗(x)}

|I+|
, ρI− =

∑
x∈I−

I{∃A∗(x)}

|I−|
(8)

where I{x} denotes the characteristic function of x.

Definition 8 The difference ρ = ρI− − ρI+ measures the Recourse Discrepancy (RD) at the
individual level.

The RD can identify unfairness whenever a significant ratio of the elements of at least one of
the two groups are so far from the decision boundaries that recourse is not a possibility for them.
In fact, in this case, only considering the ACR for the instances that admit recourse could be
misleading.

We can easily extend this to the subgroup level or to the system level as in [9], if instead of
individual i we consider specific subgroups or the whole dataset D+ and D−, respectively. For
the estimation of the ACR, we propose Algorithm 1, which has the benefit of giving an individual
definition of fairness for individual i, if applied at an individual level.

For the sake of simplicity, we define Algorithm 1 for binary sensitive variables and for binary
outcomes; however, it can be generalized to both categorical sensitive variables and outcomes. In
the binary case, we only perform recourse on the instances with unfavorable outcomes.

Note that in [9], Equation 2 relies on the estimation of the average treatment effect on outcome Y
(Y will be favorable at least γ fraction of the time) in the individual neighborhoods or group/dataset,
and then this quantity is averaged or integrated again on all possible values of γ in order to derive
the AED in Definition 3. On the other hand, the proposed Algorithm 1 performs algorithmic
recourse for each point of the cluster that has a negative outcome: our Y is always flipped by
the recourse for every structural counterfactual instance x∗SCF or we find there is no feasible and
plausible structural counterfactual to flip the outcome from undesired to desired as there may
not always exist an action to surpass the decision boundary given the constraints. Our definition
removes the need for further averaging or integration.

Inspired by counterfactual fairness in [16], [12] define the fairness of algorithmic recourse: recourse
may be considered fair at the level of the individual if the cost of recourse would have been the
same, had the individual belonged to a different protected group, i.e., under a counterfactual change
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Algorithm 1 Equality of effort via algorithmic recourse
Input

Dataset D = {D+, D−}, thresholds τ , ϵ, sensitive variable S ∈ {s0, s1}, unfavorable outcome y,
feasibility constraints F , plausibility constraints P, individual i (optional), distance d (optional).

Output
Decision: Is there equality of effort?

1. if individual i and distance d are provided as inputs then:
2. Compute the similarity subsets I = {I+, I−} using distance d.
3. else:
4. Set I = D, I+ = D+ and I− = D−.
5. for each subset I∗ ∈ {I+, I−} do:
6. Identify the instances x , s.t. h(x) = y, where y ∈ {0, 1} is the unfavorable outcome (i.e.
the outcome we wish to change).
7. Include and bound treatment variables T ⊆ X as actionable variables in the feasibility
constraint F and bound the covariates X in the plausibility constraints P in Equation 3.
8. Initialize the count for the Ratio of Possible Recourse in group I∗: ρI∗ = 0
9. for ∀x ∈ I∗ do:
10. Perform algorithmic recourse on x following Equations 3 and 4.
11. if there exists a solution to algorithmic recourse for instance x then:
12. Calculate the cost of recourse for instance x, cost(A∗(x)).
13. else:
14. ρI∗ = ρI∗ +

1
|I∗|

15. Calculate the Average Minimal Effort as ΦI∗ = E[cost(A∗(x))] for x ∈ I∗ (Definition 5).
16. Compute ACR as Φ = ΦI+/ΦI− (Definition 6).
17. Compute RD as ρ = ρI− − ρI+ (Definition 8).
18. if |ρ| ≥ ϵ then: return False
19. else if |Φ| ≤ τ then: return True
20. else: return False

to the sensitive variable S. [12] show that the concepts of counterfactual fairness of prediction and
counterfactual fairness of recourse are complementary. We note that counterfactually fair algorithms
do not necessarily imply fairness of recourse, and, conversely, fairness of recourse does not guarantee
counterfactual fairness, as detailed in [12]. Moreover, when an algorithm is counterfactually unfair
(i.e. a flip of the sensitive attribute for an individual reverses an unfavorable outcome, thus removing
the need for recourse), counterfactual fairness of recourse, as defined by [12], concludes maximal
unfairness at the individual level. Our approach based on situation testing offers a novel way of
measuring the fairness of algorithmic recourse, even when the counterfactual twin has already seen
its outcome reversed.

Note that Algorithm 1 has to limit the feasibility constraints in Equation 3: the actionable
variables or treatment variables T ⊆ X cannot include the sensitive variable S. In the trivial and
degenerate case when the treatment variable and the sensitive variable were allowed to coincide,
i.e. T = S, the mere existence of recourse on the sensitive variable would imply counterfactual
unfairness for the individual and would not carry any information about equality of effort. In
fact, the notion of counterfactual fairness in [16], [17], albeit an individual notion, offers a different
perspective in that the counterfactual change is related to a simple flip of the sensitive variable. In
our case, we want to establish the cost of changing other treatment variables that is required to
change the outcome.
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The choice of the distance [9] extend the situation testing developed in [8] to define the two
subsets I+ and I− for each assessment. However, the distance function in [8] is unnecessarily
complex [3]. We take the ℓ1 or ℓ2 norms if all the K variables are continuous, otherwise we
follow an idea detailed in [18]. The distance between two domain values xk and x′k of variable
Xk, k ∈ {1, . . . ,K} is defined as the value difference, where the normalized ℓ1 distance or Manhattan
distance is employed for continuous/ordinal attributes, and the overlap measurement is employed
for categorical attributes.

Definition 9 The normalized Manhattan distance is defined as

md(xk, x
′
k) =

|xk − x′k|
rangek

=
|xk − x′k|

maxℓ(x
ℓ
k)−minℓ(x

ℓ
k)

(9)

Definition 10 The overlap measurement is defined as

overlap(xk, x
′
k) =

{
0 if xk = x′k
1 otherwise

(10)

Definition 11 The difference between two points x, x′ is given by d(x, x′) =
∑K

k=1 dist(xk, x
′
k)

where dist(xk, x
′
k) =

{
md(xk, x

′
k) if Xk is continuous/ordinal

overlap(xk, x
′
k) if Xk is categorical

(11)

4 Results

We present results of the proposed method on synthetic data and real data from the German credit
dataset [19] (cf. Figure 1). In both cases, we learn the structural equations by fitting a linear
regression model to the child-parent tuples, and a logistic regression model for the binary outcome.
Distances are based on Definition 11 (the choice of the ℓ1 norm over ℓ2 norm for distances among
neighbors does not seem to have an impact on results). For the sake of simplicity, we do not impose
strict bounds on the feasibility constraints, and we fit linear relationships between variables in the
causal graph. This reflects in the existence of recourse for all the individuals, meaning that we do
not need to leverage the Recourse Discrepancy (RD) and we only have to consider the Average
Cost Ratio (ACR) in Algorithm 1. Also, we do not impose different relative costs on variables, but
consider them equally important, i.e. we use uniform weights so the same change in each feature
results in the same cost. Hence, we use Equation 5 to compute costs.

4.1 Synthetic data

Synthetic data is composed of n = 1000 samples following Figure 1a.

• The sensitive variable X1 is given by the exogenous variable U1 ∼ Bernoulli(0.5).

• The proxy and actionable variable X2 is given by X2 = α · X1 + U2. Exogenous random
variable is U2 ∼ N (3, 1) and parameter α controls the strength of the relationship with X1.

• The actionable variable X3 is given by exogenous random variable U3 ∼ N (0, 1).

• The outcome is Y = f(std(X2 +X3)) where f(·) is the logistic sigmoid function and std(·)
indicates standardization.

• Ŷ is the predicted outcome, according to logistic regression.
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U1 X1

U2 X2

U3 X3

Y

(a) Synthetic data.

U1X1U2 X2

U3 X3

U4 X4

Y

(b) German credit data.

Figure 1: Directed Acyclic Graphs (DAGs).

Figure 2a refers to the ACR in Definition 6, whereas Figure 2b refers to the ratio of protected
individuals in the neighborhood I = I+∪ I−, both as functions of the quantile threshold on distance
for the subset I centered on each individual. The center line refers to the average value, enclosed
by the 95% confidence interval. The variance tends to be higher for smaller quantiles (as there
are fewer elements in each subset), whereas for unitary quantile the variance is zero as we always
consider the whole dataset for comparisons and can therefore derive the effort discrepancy at
system level from that point. The ACR steadily remains over 1.2 for all radii, thus confirming
the unfairness (inequality of effort) at both the individual level (ACR(0.2) ≈ 1.5) and the system
level (ACR(1) ≈ 2). On the contrary, for the unprotected group ACR(q) <= 0.8 ∀q ∈ Q and
ACR(1) ≈ 0.5. Note that the two curves of Figure 5a diverge at the system level (i.e. for high
quantiles).

Figure 3a describes the ACR averaged over all the protected individuals (S = s0), whereas
Figure 3b presents the corresponding average ratio of elements with the sensitive attribute in the
subset I = I+ ∪ I−, both for different values of α. We notice that as α increases, the unfairness
also grows in terms of the inequality of effort. When α is zero, we see that ACR stays at one and
we can conclude the system has an equality of effort.
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Figure 2: Equality of Effort for α = 2 - synthetic data.

Figure 4 describes in more detail the average costs for the subsets I+ and I−, respectively
averaged over all the protected individuals (S = s0) in Figure 4a) and all the unprotected individuals
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Figure 3: Plots for different values of α - synthetic data.
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(a) Cost of recourse, protected group (S = s0).
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(b) Cost of recourse, unprotected group (S = s1).
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(c) Size of subsets, protected group (S = s0).
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(d) Size of subsets, unprotected group (S = s1).

Figure 4: Details of recourse costs and subset size - synthetic data for α = 2.
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(S = s1) in Figure 4b), both with unfavorable outcome (Y = 0); whereas Figure 4c and 4d represent
the corresponding number of elements in I+ and I−.

4.2 Real data

The German Credit dataset from the UCI repository contains 20 attributes of 1000 individuals
applying for loans [19]. The outcome is binary: a low or high credit risk, representing the likelihood
of repaying the loan. We consider a subset of the features, similarly to [11]. The setup is depicted
in Figure 1b:

• X1 is the individual’s sex (the sensitive attribute, treated as immutable).

• X2 is the individual’s age (actionable but can only increase).

• X3 is the credit amount given by the bank (actionable).

• X4 is the repayment duration of the credit (non-actionable but mutable).

• The outcome Y is the ground truth for customer risk.

• Ŷ is the predicted customer risk, according to logistic regression.

Similarly, Figure 5a refers to the ACR in Definition 6, i.e. the ratio of the costs of the two subsets,
whereas Figure 5b refers to the ratio of protected individuals in the neighborhood I = I+ ∪ I−.
The ACR steadily remains well over 1.2 for all radii in the protected group, thus confirming the
unfairness (inequality of effort) at both the individual level with ACR(0.2) ≈ 3 and at the system
level with ACR(1) ≈ 1.3. On the contrary, for the unprotected group ACR(q) < 0.8 ∀q ∈ Q and
ACR(1) ≈ 0.77. The two curves of Figure 5a diverge at the individual level while converging at the
system level, showing that group fairness notions might struggle to capture individual unfairness.

0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

quantile on distance

A
C

R

protected group (S = s0)
unprotected group (S = s1)

(a) Average Cost Ratio (ACR).

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

quantile on distance

ra
ti

o

protected group (S = s0)
unprotected group (S = s1)

(b) Average ratio of protected elements in I = I+∪I−.

Figure 5: Equality of Effort - German credit dataset.

Figure 6 describes in more detail the average costs for the subsets I+ and I−, respectively
averaged over all the protected individuals (S = s0) in Figure 6a) and all the unprotected individuals
(S = s1) in Figure 6b), both with unfavorable outcome (Y = 0); whereas Figure 6c and 6d represents
the corresponding number of elements in I+ and I−.
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(a) Costs of recourse, protected group (S = s0).
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(b) Costs of recourse, unprotected group (S = s1).
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(c) Size of subsets, protected group (S = s0).
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(d) Size of subsets, unprotected group (S = s1).

Figure 6: Details of recourse costs and subset size - German credit dataset.
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4.3 Comparison between counterfactual fairness and equality of effort

We observe that the notions of counterfactual fairness and of equality of effort are complementary
as each offers different insights into potential unfairness. Figure 7a shows results of counterfactual
fairness ratio (CFR), i.e. the ratio of individuals towards whom our classification algorithm is
counterfactually fair as in [17], for some configurations of synthetic data and the German credit
dataset. Note that, as an inverse to ACR in Figure 3a, the CFR is a monotonically decreasing
function of α, because it is a direct measure of fairness (as opposed to unfairness). Figure 7b
shows the distribution of recourse costs, if we consider the subsets of counterfactually fairly treated
individuals (CF) and counterfactually unfairly treated individuals (no CF) for both synthetic data
with α = 2 and for the German credit dataset. The costs are considerably lower under counterfactual
unfairness, because counterfactually unfairly treated individuals tend to be closer to the decision
boundary as their counterfactual twin would cross the boundary.
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Figure 7: Comparison with counterfactual fairness.

5 Conclusion

We presented a novel approach to assess equality of effort, based on the cost of algorithmic recourse
via minimal interventions. The proposed algorithm has several advantages: the flexibility of the
recourse actions (multiple variables can be actionable at the same time) and of the feasibility and
plausibility constraints that can be imposed on them; the cost of recourse can be derived directly
from the optimization problem; finally relative costs of variables could be directly included in the
model as weights in the cost expression, thus capturing a real cost or effort for each intervention.
We discussed how this notion relates to other causal notions of fairness (equality of effort in [9]
and counterfactual fairness of prediction and recourse in [16], [17]) and [12], respectively. We
applied this notion to synthetic data as well as real data from the German credit dataset, averaging
results for different values of hyperparameters and showing equality and inequality of effort at both
the individual and the system level. Our idea can be developed further by including plausibility
constraints on covariates and relative costs on the actionable variables in the recourse problem; by
enforcing more complex feasibility constraints and taking into account the Recourse Discrepancy in
Definition 8; and by studying the complexity of the algorithm and introducing matching techniques
to deal with large datasets.
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